Projectivities in Simplicial Complexes and Colorings of Simple Polytopes

نویسنده

  • Michael Joswig
چکیده

For each strongly connected finite-dimensional (pure) simplicial complex ∆ we construct a finite group Π(∆), the group of projectivities of ∆, which is a combinatorial but not a topological invariant of ∆. This group is studied for combinatorial manifolds and, in particular, for polytopal simplicial spheres. The results are applied to a coloring problem for simplicial (or, dually, simple) polytopes which arises in the area of toric manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.

متن کامل

Combinatorial Groupoids, Cubical Complexes, and the Lovász Conjecture

A foundation is laid for a theory of combinatorial groupoids, allowing us to use concepts like “holonomy”, “parallel transport”, “bundles”, “combinatorial curvature” etc. in the context of simplicial (polyhedral) complexes, posets, graphs, polytopes and other combinatorial objects. A new, holonomy-type invariant for cubical complexes is introduced, leading to a combinatorial “Theorema Egregium”...

متن کامل

O ct 2 00 5 Combinatorial groupoids , cubical complexes , and the Lovász conjecture

A foundation is laid for a theory of combinatorial groupoids, allowing us to use concepts like “holonomy”, “parallel transport”, “bundles”, “combinatorial curvature” etc. in the context of simplicial (polyhedral) complexes, posets, graphs, polytopes and other combinatorial objects. A new, holonomy-type invariant for cubical complexes is introduced, leading to a combinatorial “Theorema Egregium”...

متن کامل

Obstructions to Weak Decomposability for Simplicial Polytopes

Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation poly...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008